

Computer Science Department

College of Natural and Behavioral Sciences California State University, Dominguez Hills NSM A-132 1000 East Victoria Carson, CA 90747 *Ph:* (310) 243-3398 *fax:* (310) 243-3153

Specific Computer Science Supplementary Authorization Curriculum

The certificate program will consist of 3 courses for a total of 10 credits to be offered in 3 consecutive sessions - a one-year program. Courses would use open-source software and free textbooks.

Course I:

CSC395-61: Introduction to Hardware & Programming (3 credits)

<u>Topics</u>: Computer Hardware (digital devices, systems), Problem Solving, Programming with Python, Ethics in Computing

Learning Objectives:

- Identify the major components of a modern computer system
- Convert values into different number systems
- Apply frameworks for problem solving
- Write programs using Python
- Recommend ethical practices in Computing

Course Outline:

Topics	Sub-topics	Timeline (48 Hrs)
Overview of course, Pre-course	Topics to be covered during the course,	2 hours
survey	understand the level of enrolled participants	
	using survey	
Computer Hardware	Different hardware components of computer	3 hours
	Computer Memory Hierarchy	3 hours
	Representation of numbers in binary, octal	4 hours
	and hexadecimal	
Problem Solving	IDEAL Problem Solving Framework	6 hours
	Word Problems, Puzzles	6 hours
Programming with Python	Variable, conditionals, loops, functions, list	18 hours
Social Issues in Computing	Identity theft, Cyber Bullying, Gaming	4 hours
	Addiction, Privacy, Health and fitness,	
	Education	
End-course survey, Preview of	Survey to receive feedback from participants,	2 hours
next course	preview of the next course and materials	

csc@csudh.edu

http://csc.csudh.edu/

Computer Science Department

College of Natural and Behavioral Sciences California State University, Dominguez Hills NSM A-132 1000 East Victoria Carson, CA 90747 *Ph:* (310) 243-3398 *fax:* (310) 243-3153

Course II:

CSC395-62: Computer Networks & Ethics (3 credits)

<u>Topics</u>: Networking, Computational Thinking, Computer Programming with Java, Social Issues in Computing

Learning Objectives:

- Describe the major components of computer networks
- Explain the different types of communication and network devices
- Apply Computational Thinking principles for problem solving
- Write programs using Java
- Discuss Social Issues in Computing

Course Outline:

Topics	Sub-topics	Timeline (48 Hrs)
Review of pervious course,	Review pervious topics, topics to be covered	2 hours
Overview of current course, Pre-	during the current course, understand the	
course survey	level of enrolled participants using survey	
Computer Networks	Internet and OSI Model	3 hours
	Network Protocols	4 hours
	Wireless Communication	4 hours
Computational Thinking	Decomposition, Pattern recognition,	6 hours
	Abstraction, Algorithm design	
	Duke 7-step process	6 hours
Programming with Java	Variable, conditionals, loops, methods,	18 hours
	Class, Object Oriented Programming	
	Principles	
Ethics in Computing	Privacy and Anonymity, Computer Crime	3 hours
End-course survey, Preview of	Survey to receive feedback from	2 hours
next course	participants, preview of the next course and	
	materials	

http://csc.csudh.edu/

Computer Science Department

College of Natural and Behavioral Sciences California State University, Dominguez Hills

Course III:

CSC395-63: Algorithms & Software Design (4 credits)

Topics: Data Structures & Algorithms, Software Design, Legal Issues in Computing, Methods

Learning Objectives:

- Examine the different data structures and their applications
- Design algorithms using different principles to solve problems
- Apply the different software design models
- Discuss Legal Issues in Computing
- Explore the pedagogy in Computer Science

Course Outline:

Topics	Sub-topics	Timeline (60 Hrs)
Review of pervious course,	Review pervious topics, topics to be covered	2 hours
Overview of current course, Pre-	during the current course, understand the	
course survey	level of enrolled participants using survey	
Data Structures & Algorithms	Arrays, Stack, Queue, Linked List, Trees,	14 hours
	Graphs, Hash Map	
	Analysis of Algorithms, Searching and	10 hours
	Sorting, Greedy Algorithms, Divide and	
	Conquer	
Software Design	Design Concepts, Modeling language,	7 hours
	Design patterns	
	Software Development Life Cycle,	7 hours
	Waterfall mode, Agile development	
Legal Issues in Computing	Intellectual Property, Professional	7 hours
	responsibility, Globalization	
Computer Science Methods	Pedagogy in Computer Science	12 hours
End-course survey, End of	Survey to receive feedback from participants	1 hour
certificate survey	for the course and also the certificate	

Courses/Topics Mapping Table

Course #	Courses Title/Topics	Computer Programming	Data structures and algorithms	Digital devices, systems and networks	Software design	Impact of Computing
CSC395-61	Introduction to Hardware & Programming	X		X		Х
CSC395-62	Computer Networks & Ethics	X		X	Х	Х
CSC395-63	Algorithms & Software Design		X		Х	Х

<u>Specific supplementary authorizations</u> may be added to Single Subject, Standard Secondary and Special Secondary (academic subject areas only) Teaching Credentials and authorize the holder to teach the specific subject in grades preschool, kindergarten-12, and classes organized primarily for adults.

Computer Science – Coursework completed must cover the following content areas:

• **Computer Programming**: includes expertise in at least one modern, high-level programming language (e.g., Python, Java, C/C++/C#).

• **Data structures and algorithms**: covers data representation, abstraction, searching and sorting in the context of solving problems using programming and computational tools.

• **Digital devices, systems and networks**: covers computer and communication devices and the systems they compose, including the concepts and abstractions that enable stand-alone, networked, and mobile digital devices to operate and communicate.

• **Software design**: covers the process of planning, engineering and implementing a software system to solve a problem, typically using both a design and a programming methodology, such as object-oriented and functional approaches.

• Impacts of computing: includes the social, ethical, and legal issues and impacts of computing, as well as the contributions of computer science to current and future innovations in the arts, business, humanities, medicine, and science. These topics may be included within courses that cover any of the other content areas. — The balance of the units may be in any course that falls within the academic department for that subject category. Computer classes in the Education Department may be used including a pedagogy course in computer science from either department.